

Cooperative Probabilistic Trajectory Forecasting under occlusion

Anshul Nayak Azim Eskandarian

COLLEGE OF ENGINEERING MECHANICAL ENGINEERING VIRGINIA TECH.

Motivation

- Estimation and prediction of dynamic occluded objects is essential for planning.
- GPS denied environment such as indoor navigation.
- Communication of rich sensor information computationally expensive.

Design an end-to-end network that estimates relative pose and forecasts future trajectory of occluded object.

Methods : Pose Recovery

Pose Recovery between two cameras has been used to obtain rigid body transformation of occluded pedestrian.

Step 1: Relative Orientation: Cameras take perspective images from two orientation.

Step 2: Feature detection and description:

- Difference of Gaussian
- SIFT, ORB, SURF

Step 3: Feature Matching:

- FLANN or KNN matcher
- RANSAC to eliminate outliers

Step 4: Relative Pose Recovery:

- Fundamental matrix : x'Fx = 0
- Camera intrinsic: K1, K2
- Essential matrix decomposition: SVD(E)

Visual Odometry can be pivotal for cheap pose recovery between two moving frames if the initial relative pose is known

How accurate is pose recovery?

COLLEGE OF ENGINEERING MECHANICAL ENGINEERING

Methods : Uncertainty – aware Prediction

Pose recovery followed by rigid body transformation to estimate occluded object's transformed states.

Ego Agent

Predicted

Trajectory + UQ

- Uncertainty-aware prediction using Bayesian inference of neural network models:
 - Monte Carlo Dropout

• LSTM Cell

🗙 Dropout

• Deep Ensembles

Experiments: Pose Recovery

Ground Truth	[1.31, -1.767, 19.12]
Estimate	[1.44, -3.018, 21.878]
Feature points	1290
Good Matches	128

How reliably can pose recovery be used to transform pedestrian coordinates from camera 1 to camera 2 frame?

Rigid body Transformation:

• $[x', y', z'] = R^{T}([x, y, z] - t)$

Average Displacement error:

• $\frac{1}{T}\Sigma_{t=t0}^{tf} \| \widehat{Y} - Y \|$

Results

	ETH	HOTEL	ZARA1	ZARA2	UNIV	AVERAGE
S-LSTM [12]	1.09/2.35	0.79/1.76	0.47/1.00	0.56/1.17	0.67/1.40	0.72/1.54
SGAN [32]	0.87/1.62	0.67/1.37	0.35/0.68	0.42/0.84	0.76/1.52	0.61/1.21
Sophie [33]	0.70/1.43	0.76/1.67	0.30/0.63	0.38/0.78	0.54/1.24	0.54/1.15
Social-BiGAT [34]	0.69/1.29	0.49/1.01	0.30/0.62	0.36/0.75	0.55/1.32	0.48/1.00
LSTM	0.54/0.94	0.33/0.46	0.51/0.96	0.53/0.96	0.75/0.93	0.53/0.85
1D CNN	0.71/0.90	0.71/1.04	0.75/1.02	0.86/1.16	0.95/1.24	0.79/1.07
CNN-LSTM	0.68/1.11	0.98/1.29	0.73/0.99	0.95/1.27	0.87/1.11	0.84/1.15
LSTM + MC	0.55/0.94	0.32/0.45	0.51/0.96	0.54/0.96	0.59/0.84	0.50/0.83
1D CNN + MC	0.69/0.84	0.58/0.79	0.73/0.99	0.85/1.15	0.71/0.85	0.71/0.92
CNN-LSTM + MC	0.48/0.82	0.3/0.48	0.50/0.83	0.77/1.12	0.53/0.86	0.51/0.82

* Our model CNN-LSTM with dropout showed improvement in ADE and FDE for mean path on pedestrian dataset.

Experimental results:

- Probabilistic predicted states for Camera 1 transformed (Fig. b) matches camera 2 (Fig. c).
- Ground truth lies within the 2σ predicted distribution.

KL div. between predicted distribution of transformed and ground truth is minimum.

Conclusion

- End-to-end cooperative trajectory prediction with safety guarantees under occlusion.
- * Extended to dynamic agents using visual odometry if initial pose is known.

Prediction uncertainty-aware robust planning for dynamic objects under occlusion.