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» Predicted + UQ (CA2)

% Estimation and prediction of dynamic occluded
objects is essential for planning.

+» GPS denied environment such as indoor
navigation.

+» Communication of rich sensor information
computationally expensive.

Design an end-to-end network that estimates
relative pose and forecasts future trajectory of
occluded object.
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Methods : Pose Recovery 7

% Pose Recovery between two cameras has been used to obtain rigid
body transformation of occluded pedestrian.

Step 1: Relative Orientation: Cameras take perspective
images from two orientation. D

Step 2: Feature detection and description:

. Difference of Gaussian
. SIFT, ORB, SURF [ >

Step 3: Feature Matching:
- FLANN or KNN matcher [ >
*  RANSAC to eliminate outliers

Step 4: Relative Pose Recovery: l R
. Fundamental matrix : X’Fx =0 X )
. Camera intrinsic: K1, K2 D Yc rn r12 r13 tx yw
. . A 21 22 23
*  Essential matrix decomposition: SVD(E) ZC =|ry rsy ras ty ZW
C Z w
1 0 0 0 1 1

Visual Odometry can be pivotal for cheap pose recovery between
two moving frames if the initial relative pose is known How accurate is pose recovery?
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Methods : Uncertainty —aware Prediction vr
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% Pose recovery followed by rigid body transformation to estimate occluded object’s transformed states.
using Bayesian inference of neural network models:

*  Monte Carlo Dropout
* Deep Ensembles
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Experiments: Pose Recovery

How reliably can pose recovery be used to transform
pedestrian coordinates from camera 1 to camera 2 frame?

Rigid body Transformation:
[X’, Y’/ Z,] = RT([XI YI Z] _t)

Average Displacement error:
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Results

ETH HOTEL ZARA1 ZARA2 UNIV AVERAGE
S-LSTM [12] 1.09/2.35  0.79/1.76  0.47/1.00  0.56/1.17  0.67/1.40 0.72/1.54
SGAN [32] 0.87/1.62  0.67/1.37  0.35/0.68  0.42/0.84  0.76/1.52 0.61/1.21
Sophie [33] 0.70/1.43  0.76/1.67  0.30/0.63  0.38/0.78  0.54/1.24 0.54/1.15
Social-BiGAT [34]  0.69/1.29  0.49/1.01  0.30/0.62  0.36/0.75  0.55/1.32 0.48/1.00
LSTM 0.54/0.94  0.33/0.46  0.51/0.96  0.53/0.96  0.75/0.93 0.53/0.85
1D CNN 0.71/0.90  0.71/1.04  0.75/1.02  0.86/1.16  0.95/1.24 0.79/1.07
CNN-LSTM 0.68/1.11  0.98/1.29  0.73/0.99  0.95/1.27  0.87/1.11 0.84/1.15
LSTM + MC 0.55/0.94  0.32/0.45 0.51/0.96  0.54/0.96  0.59/0.84 0.50/0.83
ID CNN + MC 0.69/0.84  0.58/0.79  0.73/0.99  0.85/1.15  0.71/0.85 0.71/0.92
CNN-LSTM + MC  0.48/0.82  0.3/0.48  0.50/0.83  0.77/1.12  0.53/0.86 0.51/0.82

* Our model CNN-LSTM with dropout showed improvement
in ADE and FDE for mean path on pedestrian dataset.

Experimental results:

«  Probabilistic predicted states for Camera 1 transformed

(Fig. b) matches camera 2 (Fig. c).

*  Ground truth lies within the 2¢ predicted distribution.
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KL div. between predicted distribution of transformed

and ground truth is minimum.
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Conclusion

% End-to-end cooperative trajectory prediction with safety guarantees under occlusion.

% Extended to dynamic agents using visual odometry if initial pose is known.

Goal

5 How uncertain human-robot
interaction can be modeled to handle
occlusion-aware planning?

Predicted Trajectory + UQ
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Deterministic Prediction

Ego Agent

Prediction uncertainty-aware robust planning for dynamic objects under occlusion.



